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Abstract. We compute the one-loop (-functions describing the renormalisation of the coupling constant A
and the frequency parameter {2 for the real four-dimensional duality-covariant non-commutative ¢*-model,
which is renormalisable to all orders. The contribution from the one-loop four-point function is reduced
by the one-loop wavefunction renormalisation, but the gx-function remains non-negative. Both 8 and (g
vanish at the one-loop level for the duality-invariant model characterised by {2 = 1. Moreover, B also
vanishes in the limit 2 — 0, which defines the standard non-commutative ¢*-quantum field theory. Thus,

the limit {2 — 0 exists at least at the one-loop level.

1 Introduction

For many years, the renormalisation of quantum field theo-
ries on non-commutative R* has been an open problem [1].
Recently, we have proven in [2] that the real duality-
covariant ¢*-model on non-commutative R* is renormal-
isable to all orders. The duality transformation exchanges
positions and momenta [3],

¢(p) ¢ 1*\/| det 0] ¢(x),
Pt Bu=2(07Y), 2" (1)
where ¢(p,) = [ d*ze(~D"Pen®ip(z,). The subscript a
refers to the cyclic order in the x-product. The duality-
covariant non-commutative ¢*-action is given by

S[¢7 Ho, )‘7 Q]

2
= [t (5005 @) + 5 3,00 @4)

w3 A
+2¢*¢+4!¢*¢*¢*¢> (). (2)

Under the transformation (1) one has

A1
S (s o, A, 2] > 228 [ B0 2 = 3
[¢7/~l‘07 ) ]H |:¢7979270 ()
In the special case 2 = 1 the action S[¢; uo, A, 1] is invari-
ant under the duality (1). Moreover, S[¢; 1o, A, 1] can be
written as a standard matrix model which is closely related
to an exactly solvable model [4].
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Knowing that the action (2) gives rise to a renormalis-
able quantum field theory [2], it is interesting to compute
the ()- and Bo-functions which describe the renormalisa-
tion of the coupling constant A and of the oscillator fre-
quency {2. Whereas we have proven the renormalisability
in the Wilson—Polchinski approach [5,6] adapted to non-
local matrix models [7], we compute the one-loop Sx- and
Bo-functions by standard Feynman graph calculations. Of
course, these are Feynman graphs parametrised by matrix
indices instead of momenta. We rely heavily on the power-
counting behaviour proven in [2], which allows us to ignore
in the g-functions all non-planar graphs and the detailed
index dependence of the planar two- and four-point graphs.
Thus, only the lowest-order (discrete) Taylor expansion of
the planar two- and four-point graphs can contribute to
the (-functions. This means that we cannot refer to the
usual symmetry factors of commutative ¢*-theory so that
we have to carefully recompute the graphs.

We obtain interesting consequences for the limiting
cases 2 =1 and (2 = 0 as discussed in Sect. 5.

2 Definition of the model

The non-commutative R* is defined as the algebra Rg which
as a vector space is given by the space S(R*) of (complex-
valued) Schwartz class functions of rapid decay, equipped
with the multiplication rule

(% b)(z) = / (;1:;4 / d'ya <x+;0.k) ba-+y) Y

Ok =0k, ky=kay', 0 =—0"". (4)

We place ourselves into a coordinate system in which the
only non-vanishing components 0, are 1o = —0y =
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034 = —045 = 6. We use an adapted base,
bmn(z) = fmlnl (ml,x2) fm2n2 (:C37I4) )

1 1
- m 2 _n 2
m=",€EN" n=", €N,

(5)

where the base f,1,1(z!,2%) € RZ is given in [8]. This
base satisfies

(bmn * bkl)(aj) - 6nkbml (.Z‘) 5

/ A2 by (1) = 472626, (6)

According to [2], the duality-covariant ¢*-action (2) has
an expansion as follows in the matrix base (5):

S[¢7 Ho, )‘7 'Q]

= 4m%0? Z

m,n,k,l€N?

where ¢(z) =3, enz Prmnbmn(z) and

(7)
<;Gmn;kl¢mn¢kl + 2¢mn¢nk¢kl¢lm> )

Grnikl = <M8+; (1+92?) (m1+n1+m2+n2+2)>
X By O 1 Ory2 2 Opy22
—5 (1=2) (VO Do D 6,0
VAT G s G111 ) Dz Sy
+ (\/mén2+l,k25m2+l,l2
VI 6y g Gz 112 ) By i)

The quantum field theory is defined by the partition
function

Z1J]

:/ H d¢ab exp —S[¢] —475202 Z ¢annm

a,beN? m,neN2

(8)

(9)

For the free theory defined by A = 0 in (7), the solution
of (9) is given by
Ztroo|J] (10)

1
= Zfree[o] exp 4717292 §J7rlnAm7L;likl 5

2

m,n,k,lEN2

where the propagator A is defined as the inverse of the
kinetic matrix G:

Z Gmn;klAlk;sr = Z Anm;lkal;rs = 5m7‘5ns (]-]-)

k,lEN2 k,lEN?
We have derived the propagator in [2]:

Amlnyklll
m2n2k22
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0
B m6m1+k1’”1+”5m2+k2,n2+z2

min(m+1,n+k)
2

ugd 1
> B(1+8§2+ ()= ol 142111
o L=t
y 1+2||”||am—%(II?”'”L||+||7€||)+IIUH (1-92)?
2F7
28+ L(|ml+[KID+H| | (1+2)

X nl 7 i iini
H(\/<Z+ k)<“+k2
mi I -2\
. i i - i i Y 1
X\/(vw’"gl )(vwl 5 ) (HQ) ) (12

2
where Zv 0= Zvlzal 222:(12 and ||a|| := a' + a®. Here,
B(a,b) is the Beta-function and o F} (“C’b|z) the hyperge-

ometric function.
As usual we solve the interacting theory perturbatively:

Z[J] = exp (—V {;JD Ziree[J]

B A
v [aJ] T 4(4n262)3

(13)

84
Z aJml 8Jlk 8Jkn aJnm .

m,n,k,l€N2

It is convenient to pass to the generating functional of
connected Green’s functions, W[J] = In Z[J]:

WI[J] = Weeee[J] (14)

W 0 W
1 1 - free[J] _ _1 free[‘]]
+ n( +e exp V a7 e ,

where Wiree[J] := In Zgree[J]. In order to obtain the expan-
sion in A one has to expand In(1 + z) as a power series
in z and exp(—V) as a power series in V. By a Legen-
dre transformation we pass to the generating functional of
one-particle irreducible (1PI) Green’s functions:

L e =m0 Y G Jum — W],

m,neN?

(15)

where J has to be replaced by the inverse solution of

1 OW[J]
cl .
T AR202 O (16)

3 Renormalisation group equation

The computation of the expansion coefficients
1 aNF [¢cl]
NLOGS, - - OD5h

of the effective action involves possibly divergent sums over
undetermined loop indices. Therefore, we have to intro-
duce a cut-off N/ for all loop indices. According to [2], the

(17)

Fm1n1;-..;7nNnN .
ming °
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expansion coefficients (17) can be decomposed into a rel-
evant/marginal and an irrelevant piece. As a result of the
renormalisation proof, the relevant /marginal parts have —
after a rescaling of the field amplitude — the same form
as the initial action (2), (7) and (8), now parametrised by
the “physical” mass, coupling constant and oscillator fre-
quency:

Frel/marg [ZQSCI] =95 [QSCI; Hphys >\physv Qphys} .

(18)

In the renormalisation process, the physical quantities
uph},b, Aphys and Qphyq are kept constant with respect to
the cut-off A/. This is achieved by starting from a care-
fully adjusted initial action S [Z[N]e, uo[N], AINT, 2IN]],
which gives rise to the bare effective action I'[¢%; ug[N],
AN, 2[N], N]. Expressing the bare parameters pg, A, 2
as a function of the physical quantities and the cut-off, the
expansion coefficients of the renormalised effective action

FR [d)Cl; Hphys )\physa Qphys]

i= I [ZIN]¢%, 10N, AN, IV, V]

(19)

Hphys = const

Aphys = const
2

phys = const

are finite and convergent in the limit NV — oo. In
other words,

. d
i Ny (BT

X lenl;---;mNnN [HO[NL A[NL

(20)
QNN =

This implies the renormalisation group equation

. 0 0
A (Na/v N 1 2+ On gy ”3”89)
X Fm1"1§~-§mNnN[:u’0’)\7‘Q?'/\[] =0, (21)

where
10,

Buo = ;(Q)NW (Mo[ﬂphy57)‘physvQphys,/\/]) , (22)

0
B = NW (Alktphys; Aphys: 2phys, ) (23)

0
5() = NW (‘Q[/prhym >\phyS7 QphyS7N]) ) (24)

0
Y= NW (lnz[,uphysa Aphys> QphystD . (25)

4 One-loop computations

Defining (AJ)mn = 32, senz Amnipgtpq We write (parts
of) the generating functional of connected Green’s func-
tions up to second order in A:

>

m,n,k,l€N2

1
WJ] = In Z[0] + 4n%6? 5 JmnAmnskrThi
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NGRS

" m,n,k,lEN2

{ (AT) i (AT ik (AT ) ke (AT ) om

1
W (Anm;kn(AJ)ml(AJ)lk

+Akn;lk(AJ)nm(AJ)ml + Anm,ml(AJ)lk(AJ)kn
+Alk;ml (AJ)k;n(AJ)nm)

+

1
+m (At (AT ) en (AT )i

+Akn,ml(AJ)nm(AJ)lk>
1

+m ((Anm;knAlk:;ml + Akn;lkAnm;ml)

+Anm;lkAkn;ml) }

)\2
ToapE 2

m,n,k,l,rs,t,ucN2
+Amtssr Ansts (AT )11 (AT )
+Amizsr Anmits (AT )ik (AT )ken
+ A1y sr Armits (AT ) kon (AT ) nm
+ A1k 5r Akensts (AT )i (AT ) im
+A1sr Arimsts (AT ) mi (AT ) ke
+Apnssr Amists (AT )ik (AT ) im
+Aprnssr Aot s (AT )i (AT ) pm
+Aknssr Anmits (AT ) mi (AT )1k
+Apmsr Amits (AT )i (AT ) kn
+Anmisr Atksts (AT )mi (AT )k
+Apmisr Dknsts (A )i (AT) 1) (AT )i (AT )t

{ [(Aml;srAlk';ts(AJ)kn(AJ)nm

+5 permutations of ts, sr,rusut ]
+1PI-contributions with < 2 J’s

+1PR-contributions } + O ()\3) . (26)

In second order in A we get a huge number of terms so that

we display only the 1PI-contribution with four J’s.
For the classical field (16) we get

Z Anm;qupq + 0()\)

p,qEN?

so that

= D Gaprstiis + O(N).

r,s€N?

(27)

The remaining part not displayed in (27) removes the 1PR-
contributions when passing to I" [gf)‘:l] We thus obtain
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1
T cl _ 202 - )
m,n,k,l€N2

A

+6(T292) Z (6mtApnikp + OknAmppt) | (28a)
peEN?
A
_— . 2
6 (am2gz) Sk (28b)
+0O (V) 3 G o

Hane? > AL 5 binbad (28¢c)
4' nkOlrO0stOum C

m,n,k,l,r,s,t,ucN?

A

- W Z (4Amp:qs AptstqOkn Our

p,gEN?
+4Akp:qs ApnstqgOmiOur + 4Ap1rg AmpqudnkOst
+4Apnirq Akp;qudmidst) (28d)
+ Z (4Amips AknstpOur + 4D kn;ps AmistpOur
pEN2
F4Ampits Aptirunk + 4Ap11s AmpiruOnk
+4Akpits Apnirudmi + 4Apn;ts Akpsrudmi
+4Aml;rpAkn;pu5st
+4Aknirp Amiipulst)

+ Z (4Apl;qs Amp;tq(snk 5ur
p,qEN?

+4Apn?qukp?tq OmiOur + 4Akp;7’q Apn;qu(sml(;st
+4Ampirq Apt;quénkst) (28f)

(28e)

+4Aml;t5Akn;’ru + 4Akn;tsAml;ru (28g)

FO W) dmdtionon + 0 ((67))

Here, (28a) contains the contribution to the planar two-
point function and (28b) the contribution to the non-
planar two-point function. Next, (28¢) and (28d) contribute
to the planar four-point function, whereas (28e), (28f)
and (28g) constitute three different types of non-planar
four-point functions.

Introducing the cut-off p?, ¢ < A/ in the internal sums
over p, q € N2, we split the effective action according to [2]
as follows into a relevant /marginal and an irrelevant piece
(I'[0] can be ignored):

I'[¢% = Netymarg [0%] + Dt 6], (29)
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with
1
cl] __ 22
Frel/marg [d) ] = 4n°¢ Z 5 Gmn;kl
m,n,k,l€N2
A N
. o Ao 2 A 1 1
5 g e |2 2 Auroty
pl,p?=0
+(m'+n'+m?+n?)
N
A A
Z( it i)
+O (X) ¢ drndi
+4m26>
A\ N 2
< X s 2 (A
m,n,k,l€N2 p1 2=0
+0(>‘2) grlzn ¢kl lm' (30)

To the marginal four-point function and the relevant two-
point function only the projections to planar graphs with
vanishing external indices contribute. The marginal two-
point function is given by the next-to-leading term in the
discrete Taylor expansion around vanishing external in-
dices.

In a regime where A[N] is so small that the perturbative
expansion is valid in (30), the irrelevant part I} can be
completely ignored. Comparing (30) with the initial action
according to (2), (7) and (8), we have Frel/marg[Z(éd} =

S [(bd; ,U/physa )\physy Qphys] with

Z=1- 1921520 Z ( T Ao;z,px)
+0 (2?) (31)
IU/f)hys:M(Q) 1
A N
+—" 20001 p1o—A 1 p
TR Z( oty )
N
A A
o 2 ( ey
pt.p?=
o).
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A\ N 2 N
A =\ 1 - — A X (A 1_1—A 1_1)
phys 12n262 p%:_o ( 853;538) p%:_o 0r2ip20  0p2ip20
A N
-— A —A +0 (A2 37
=P (Aprm =30 (Xpn) (37)
9 Inserting (12) into (36) we can now compute the (-
J unction up to one-loop order, omitting the index ppys
+0 (V) (33) " function (23) up to one-loop order, omitting the index ppy
on 2 and {2 for simplicity:
.Qphys =0N|1 /\Qh 5 N
g = ey 0 S
48n2° " ON
A1) X ppi=0
—— A A
*192n261221ﬂ§;3()( or =)
) = 2
F ( A gg;z)
2455 +1 (42 | UF
+0 (32) (34) —
Ko

Solving (32), (33) and (34) for the bare quantities, we 1) ,F 5, 180 1oy (1-2)2
obtain to one-loop order p CE '8(1" +i(prap2+1) | F2)?
+
2 (1+2)4 T2, (228 4489 1 1 (pl4p2)
.y Aphyss 2phys s=0 2 82 T2
Mo [Mphyss Aphys phymN b Tp
N #3011 2
Aphys L 3 —2 (@ +p°+1)| 1-0)®
_ 2 _ phys F s (1=£02)"
= Fphys | 1 12n292/l?)hys p!,p2=0 A%;z;g + - <2+£)+§(p1+p2+1) (1+0)
2= =
. . 2014+2) (3 + 45 + L' +2)
+ 222 1+
96m26 ( G/L?)hys> .
1, 55— 50" +p)| 1-0)?
3 SEA O e
X Z Alp;,l’;l - AOP;_P;O -
= 0p27p20 0p27p20 0
o0 2042 (1+ 55 + 3 (' +0?))
+0 (Mpnys) | (35)
A [:uphysy Aphysy Qphys; M + O()‘phyS) (38)
Aon N 2
= |1 L Agpt 1
)\phyh + 121262 Z ( 852?528) . . . . 1
pl,p2=0 Symmetrising the numerator in the third line p- —
N %(p1+p2) and using the expansions
A hys
+ D2 A - A
48120 Pl pPecd ( é’;;’;;é 8’;?’;28) L) 1, a- p‘z
b+p
1 2(a+b) + 2%(a+b—2) _
+O0 (N2 | 36 = O(p?
(Xorys) (36) 14z p(1+2)3 0w,
04 [:u’phys; )\phys; Qphys;j\/] F 3’ a= p‘z = 1 + 0 -1 39
2471 b +p (1+Z)3 (p )7 ( )
)‘phys (1_“0]2)hys)
= {pnys [ 1 — YTey which are valid for large p, we obtain up to irrelevant
192m ggphys contributions vanishing in the limit /' — oo



282
6 )\E)hys 0 N 1 1
A = —
ism N pl,p?=0 (1+Qghys)2 (14 pl+p?)?
2
L (1-22y)" (14922,
x _
2 (1+Qghys) 2
+0O (Ajhys) + O (N1
)\2 1_92 .
= T ( - )s +O (X)) +O (N1 L (40)
(1+(2§hys)

Similarly, one obtains

2
Aphys§2phys (1 B QPhYS)

Bo = 5 5+ O (M) +O N,
J6m (1+Q§hys) ’
(41)
/Bu — _ >\phys
asm20p2, (1422,
8+0p2, ) 2%
o [y L)
(1+Q§hys)
+0 (Auys) +O N (42)
Aphys  Pohys _
1= G s H O (W) FO WY L (43)
(1+Q§hys)

5 Discussion

We have computed the one-loop (- and ~-functions in real
four-dimensional duality-covariant non-commutative ¢*-
theory. Remarkably, this model has a one-loop contribution
to the wavefunction renormalisation which partly compen-
sates the contribution from the planar one-loop four-point
function to the @y-function. The one-loop (B)-function is
non-negative and vanishes in the distinguished case 2 = 1
of the duality-invariant model; see (3). At 2 = 1 also the
Bo-function vanishes. This is of course expected (to all or-
ders), because for 2 = 1 the propagator (12) is diagonal,

6m1l1 6k1n1 5m212 5k2n2
pd + (4/0)(mt+m?+nl4+n2+2)’

A klll| =
mlnl, _
ran2sp22 [ {2=1

so that the Feynman graphs never generate terms with
|mé —1I}] = |n* — k*| = 1 in (8).

The similarity of the duality-invariant theory with the
exactly solvable models discussed in [4] suggests that also
the Gy-function vanishes to all orders for {2 = 1. The cru-
cial differences between our model with 2 = 1 and [4] is
that we are using real fields, for which it is not so clear
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that the construction of [4] can be applied. But the planar
graphs of a real and a complex ¢*-model are very simi-
lar, so that we expect identical Sx-functions (possibly up
to a global factor) for the complex and the real model.
Since a main feature of [4] was the independence on the
dimension of the space, the model with 2 = 1 and ma-
trix cut-off N should be (more or less) equivalent to a
two-dimensional model, which has a mass renormalisation
only [8]. Therefore, we conjecture a vanishing Sx-function
in four-dimensional duality-invariant non-commutative ¢*-
theory to all orders.

The most surprising result is that the one-loop Bg-
function also vanishes for 2 — 0. We cannot directly set
2 = 0, because the hypergeometric functions in (38) be-
come singular and the expansions (39) are not valid. More-
over, the power-counting theorems of [2], which we used to
project to the relevant/marginal part of the effective ac-
tion (30), also require {2 > 0. However, in the same way as in
the renormalisation of two-dimensional non-commutative
¢*-theory [8], it is possible to switch off §2 very weakly with
the cut-off NV, e.g. with

0= ef(ln(1+ln(1+./\/)))2 . (44)
The decay (44) for large N over-compensates the growth of
any polynomial in In A/, which according to [2] is the bound
for the graphs contributing to a renormalisation of 2. On
the other hand, (44) does not modify the expansions (39).
Thus, in the limit N’ — oo, we have constructed the usual
non-commutative ¢*-theory given by 2 = 0 in (2) at the
one-loop level. It would be very interesting to know whether
this construction of the non-commutative ¢*-theory as the
limit of a sequence (44) of duality-covariant ¢*-models can
be extended to higher loop order.

We also notice that the one-loop ()- and [g-functions
are independent of the non-commutativity scale 6. There
is, however, a contribution to the one-loop mass renormal-
isation via the dimensionless quantity ughys& see (42).
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