
Digital Object Identifier (DOI) 10.1140/epjc/s2004-01853-x
Eur. Phys. J. C 35, 277–282 (2004) THE EUROPEAN

PHYSICAL JOURNAL C

The β-function in duality-covariant non-commutative φ4-theory

H. Grosse1,a, R. Wulkenhaar2,b

1 Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria
2 Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22–26, 04103 Leipzig, Germany

Received: 19 March 2004 /
Published online: 5 May 2004 – c© Springer-Verlag / Società Italiana di Fisica 2004

Abstract. We compute the one-loop β-functions describing the renormalisation of the coupling constant λ
and the frequency parameter Ω for the real four-dimensional duality-covariant non-commutative φ4-model,
which is renormalisable to all orders. The contribution from the one-loop four-point function is reduced
by the one-loop wavefunction renormalisation, but the βλ-function remains non-negative. Both βλ and βΩ

vanish at the one-loop level for the duality-invariant model characterised by Ω = 1. Moreover, βΩ also
vanishes in the limit Ω → 0, which defines the standard non-commutative φ4-quantum field theory. Thus,
the limit Ω → 0 exists at least at the one-loop level.

1 Introduction

For many years, the renormalisation of quantum field theo-
ries on non-commutative R

4 has been an open problem [1].
Recently, we have proven in [2] that the real duality-
covariant φ4-model on non-commutative R

4 is renormal-
isable to all orders. The duality transformation exchanges
positions and momenta [3],

φ̂(p) ↔ π2
√

| det θ| φ(x) ,

pµ ↔ x̃µ := 2
(
θ−1)

µν
xν , (1)

where φ̂(pa) =
∫

d4x e(−1)aipa,µxµ
a φ(xa). The subscript a

refers to the cyclic order in the �-product. The duality-
covariant non-commutative φ4-action is given by

S[φ; µ0, λ, Ω]

:=
∫

d4x

(
1
2

(∂µφ) � (∂µφ) +
Ω2

2
(x̃µφ) � (x̃µφ)

+
µ2

0

2
φ � φ +

λ

4!
φ � φ � φ � φ

)
(x) . (2)

Under the transformation (1) one has

S [φ; µ0, λ, Ω] �→ Ω2S

[
φ;

µ0

Ω
,

λ

Ω2 ,
1
Ω

]
. (3)

In the special case Ω = 1 the action S[φ; µ0, λ, 1] is invari-
ant under the duality (1). Moreover, S[φ; µ0, λ, 1] can be
written as a standard matrix model which is closely related
to an exactly solvable model [4].
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Knowing that the action (2) gives rise to a renormalis-
able quantum field theory [2], it is interesting to compute
the βλ- and βΩ-functions which describe the renormalisa-
tion of the coupling constant λ and of the oscillator fre-
quency Ω. Whereas we have proven the renormalisability
in the Wilson–Polchinski approach [5, 6] adapted to non-
local matrix models [7], we compute the one-loop βλ- and
βΩ-functions by standard Feynman graph calculations. Of
course, these are Feynman graphs parametrised by matrix
indices instead of momenta. We rely heavily on the power-
counting behaviour proven in [2], which allows us to ignore
in the β-functions all non-planar graphs and the detailed
index dependence of the planar two- and four-point graphs.
Thus, only the lowest-order (discrete) Taylor expansion of
the planar two- and four-point graphs can contribute to
the β-functions. This means that we cannot refer to the
usual symmetry factors of commutative φ4-theory so that
we have to carefully recompute the graphs.

We obtain interesting consequences for the limiting
cases Ω = 1 and Ω = 0 as discussed in Sect. 5.

2 Definition of the model

The non-commutative R
4 is defined as the algebra R

4
θ which

as a vector space is given by the space S(R4) of (complex-
valued) Schwartz class functions of rapid decay, equipped
with the multiplication rule

(a � b)(x) =
∫

d4k

(2π)4

∫
d4y a

(
x+

1
2

θ·k
)

b(x+y) eik·y ,

(θ·k)µ = θµνkν , k·y = kµyµ , θµν = −θνµ . (4)

We place ourselves into a coordinate system in which the
only non-vanishing components θµν are θ12 = −θ21 =
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θ34 = −θ42 = θ. We use an adapted base,

bmn(x) = fm1n1

(
x1, x2) fm2n2

(
x3, x4) , (5)

m = m1

m2 ∈ N
2 , n = n1

n2 ∈ N
2 ,

where the base fm1n1(x1, x2) ∈ R
2
θ is given in [8]. This

base satisfies

(bmn � bkl)(x) = δnkbml(x) ,∫
d4x bmn(x) = 4π2θ2δmn . (6)

According to [2], the duality-covariant φ4-action (2) has
an expansion as follows in the matrix base (5):

S[φ; µ0, λ, Ω] (7)

= 4π2θ2
∑

m,n,k,l∈N2

(
1
2

Gmn;klφmnφkl +
λ

4!
φmnφnkφklφlm

)
,

where φ(x) =
∑

m,n∈N2 φmnbmn(x) and

Gmn;kl =
(

µ2
0+

2
θ

(
1+Ω2) (m1+n1+m2+n2+2

))
×δn1k1δm1l1δn2k2δm2l2

− 2
θ

(
1−Ω2)((√(n1+1)(m1+1) δn1+1,k1δm1+1,l1

+
√

n1m1 δn1−1,k1δm1−1,l1

)
δn2k2δm2l2

+
(√

(n2+1)(m2+1) δn2+1,k2δm2+1,l2 (8)

+
√

n2m2 δn2−1,k2δm2−1,l2

)
δn1k1δm1l1

)
.

The quantum field theory is defined by the partition
function

Z[J ] (9)

=
∫  ∏

a,b∈N2

dφab


 exp


−S[φ] − 4π2θ2

∑
m,n∈N2

φmnJnm


 .

For the free theory defined by λ = 0 in (7), the solution
of (9) is given by

Zfree[J ] (10)

= Zfree[0] exp


4π2θ2

∑
m,n,k,l∈N2

1
2

Jmn∆mn;klJkl


 ,

where the propagator ∆ is defined as the inverse of the
kinetic matrix G:∑

k,l∈N2

Gmn;kl∆lk;sr =
∑

k,l∈N2

∆nm;lkGkl;rs = δmrδns .(11)

We have derived the propagator in [2]:

∆m1
m2

n1
n2;k

1
k2

l1
l2

=
θ

2(1+Ω)2
δm1+k1,n1+l1δm2+k2,n2+l2

×
min(m+l,n+k)

2∑
v= |m−l|

2

B

(
1+

µ2
0θ

8Ω
+

1
2

(‖m‖+‖k‖)−‖v‖, 1+2‖v‖
)

×2F1


1+2‖v‖ ,

µ2
0θ

8Ω − 1
2 (‖m‖+‖k‖)+‖v‖

2+ µ2
0θ

8Ω + 1
2 (‖m‖+‖k‖)+‖v‖

∣∣∣∣ (1−Ω)2

(1+Ω)2




×
2∏

i=1

(√(
ni

vi+ ni−ki

2

)(
ki

vi+ ki−ni

2

)

×
√(

mi

vi+ mi−li

2

)(
li

vi+ li−mi

2

)(
1−Ω

1+Ω

)2vi)
,(12)

where
∑b

v=a :=
∑b1

v1=a1

∑b2

v2=a2 and ‖a‖ := a1 +a2. Here,

B(a, b) is the Beta-function and 2F1

(
a,b
c

∣∣z) the hyperge-
ometric function.

As usual we solve the interacting theory perturbatively:

Z[J ] = exp
(

−V

[
∂

∂J

])
Zfree[J ] , (13)

V

[
∂

∂J

]
:=

λ

4!(4π2θ2)3
∑

m,n,k,l∈N2

∂4

∂Jml ∂Jlk ∂Jkn ∂Jnm
.

It is convenient to pass to the generating functional of
connected Green’s functions, W [J ] = lnZ[J ]:

W [J ] = Wfree[J ] (14)

+ ln
(

1+e−Wfree[J]
(

exp
(

−V

[
∂

∂J

])
−1
)

eWfree[J]
)

,

where Wfree[J ] := lnZfree[J ]. In order to obtain the expan-
sion in λ one has to expand ln(1 + x) as a power series
in x and exp(−V ) as a power series in V . By a Legen-
dre transformation we pass to the generating functional of
one-particle irreducible (1PI) Green’s functions:

Γ
[
φcl] := 4π2θ2

∑
m,n∈N2

φcl
mnJnm − W [J ] , (15)

where J has to be replaced by the inverse solution of

φcl
mn :=

1
4π2θ2

∂W [J ]
∂Jnm

. (16)

3 Renormalisation group equation

The computation of the expansion coefficients

Γm1n1;...;mN nN
:=

1
N !

∂NΓ
[
φcl
]

∂φcl
m1n1

. . . ∂φcl
mN nN

(17)

of the effective action involves possibly divergent sums over
undetermined loop indices. Therefore, we have to intro-
duce a cut-off N for all loop indices. According to [2], the
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expansion coefficients (17) can be decomposed into a rel-
evant/marginal and an irrelevant piece. As a result of the
renormalisation proof, the relevant/marginal parts have –
after a rescaling of the field amplitude – the same form
as the initial action (2), (7) and (8), now parametrised by
the “physical” mass, coupling constant and oscillator fre-
quency:

Γrel/marg
[Zφcl] = S

[
φcl; µphys, λphys, Ωphys

]
.

(18)

In the renormalisation process, the physical quantities
µ2

phys, λphys and Ωphys are kept constant with respect to
the cut-off N . This is achieved by starting from a care-
fully adjusted initial action S [Z[N ]φ, µ0[N ], λ[N ], Ω[N ]],
which gives rise to the bare effective action Γ [φcl; µ0[N ],
λ[N ], Ω[N ], N ]. Expressing the bare parameters µ0, λ, Ω
as a function of the physical quantities and the cut-off, the
expansion coefficients of the renormalised effective action

ΓR
[
φcl; µphys, λphys, Ωphys

]
(19)

:= Γ
[Z[N ]φcl, µ0[N ], λ[N ], Ω[N ],N ] ∣∣∣∣ µphys = const

λphys = const

Ωphys = const

are finite and convergent in the limit N → ∞. In
other words,

lim
N→∞

N d
dN

(ZN [N ] (20)

× Γm1n1;...;mN nN
[µ0[N ], λ[N ], Ω[N ],N ]) = 0 .

This implies the renormalisation group equation

lim
N→∞

(
N ∂

∂N + Nγ + µ2
0βµ0

∂

∂µ2
0

+ βλ
∂

∂λ
+ βΩ

∂

∂Ω

)

× Γm1n1;...;mN nN
[µ0, λ, Ω, N ] = 0 , (21)

where

βµ0 =
1
µ2

0
N ∂

∂N
(
µ2

0[µphys, λphys, Ωphys,N ]
)

, (22)

βλ = N ∂

∂N (λ[µphys, λphys, Ωphys,N ]) , (23)

βΩ = N ∂

∂N (Ω[µphys, λphys, Ωphys,N ]) , (24)

γ = N ∂

∂N (lnZ[µphys, λphys, Ωphys,N ]) . (25)

4 One-loop computations

Defining (∆J)mn :=
∑

p,q∈N2 ∆mn;pqJpq we write (parts
of) the generating functional of connected Green’s func-
tions up to second order in λ:

W [J ] = lnZ[0] + 4π2θ2
∑

m,n,k,l∈N2

1
2

Jmn∆mn;klJkl

− (4π2θ2) λ

4!

∑
m,n,k,l∈N2

{
(∆J)ml(∆J)lk(∆J)kn(∆J)nm

+
1

4π2θ2 (∆nm;kn(∆J)ml(∆J)lk

+∆kn;lk(∆J)nm(∆J)ml + ∆nm;ml(∆J)lk(∆J)kn

+∆lk;ml(∆J)kn(∆J)nm)

+
1

4π2θ2 (∆nm;lk(∆J)kn(∆J)ml

+∆kn;ml(∆J)nm(∆J)lk)

+
1

(4π2θ2)2
((∆nm;kn∆lk;ml + ∆kn;lk∆nm;ml)

+∆nm;lk∆kn;ml)

}

+
λ2

2(4!)2
∑

m,n,k,l,r,s,t,u∈N2

{[(
∆ml;sr∆lk;ts(∆J)kn(∆J)nm

+∆ml;sr∆kn;ts(∆J)lk(∆J)nm

+∆ml;sr∆nm;ts(∆J)lk(∆J)kn

+∆lk;sr∆ml;ts(∆J)kn(∆J)nm

+∆lk;sr∆kn;ts(∆J)ml(∆J)nm

+∆lk;sr∆nm;ts(∆J)ml(∆J)kn

+∆kn;sr∆ml;ts(∆J)lk(∆J)nm

+∆kn;sr∆lk;ts(∆J)ml(∆J)nm

+∆kn;sr∆nm;ts(∆J)ml(∆J)lk

+∆nm;sr∆ml;ts(∆J)lk(∆J)kn

+∆nm;sr∆lk;ts(∆J)ml(∆J)kn

+∆nm;sr∆kn;ts(∆J)ml(∆J)lk

)
(∆J)ru(∆J)ut

+5 permutations of ts, sr, ru, ut
]

+1PI-contributions with ≤ 2 J ’s

+1PR-contributions
}

+ O (λ3) . (26)

In second order in λ we get a huge number of terms so that
we display only the 1PI-contribution with four J ’s.

For the classical field (16) we get

φcl
mn =

∑
p,q∈N2

∆nm;pqJpq + O(λ)

so that

Jpq =
∑

r,s∈N2

Gqp;rsφ
cl
rs + O(λ) . (27)

The remaining part not displayed in (27) removes the 1PR-
contributions when passing to Γ

[
φcl
]
. We thus obtain
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Γ
[
φcl] = Γ [0] + 4π2θ2

∑
m,n,k,l∈N2

1
2




Gmn;kl

+
λ

6 (4π2θ2)

∑
p∈N2

(δml∆pn;kp + δkn∆mp;pl)


(28a)

+
λ

6 (4π2θ2)
∆ml;kn (28b)

+O (λ2)

φcl

mnφcl
kl

+4π2θ2
∑

m,n,k,l,r,s,t,u∈N2

λ

4!


δnkδlrδstδum (28c)

− λ

2(4!) (4π2θ2)


 ∑

p,q∈N2

(4∆mp;qs∆pl;tqδknδur

+4∆kp;qs∆pn;tqδmlδur + 4∆pl;rq∆mp;quδnkδst

+4∆pn;rq∆kp;quδmlδst) (28d)

+
∑
p∈N2

(4∆ml;ps∆kn;tpδur + 4∆kn;ps∆ml;tpδur

+4∆mp;ts∆pl;ruδnk + 4∆pl;ts∆mp;ruδnk

+4∆kp;ts∆pn;ruδml + 4∆pn;ts∆kp;ruδml

+4∆ml;rp∆kn;puδst

+4∆kn;rp∆ml;puδst) (28e)

+
∑

p,q∈N2

(4∆pl;qs∆mp;tqδnkδur

+4∆pn;qs∆kp;tqδmlδur + 4∆kp;rq∆pn;quδmlδst

+4∆mp;rq∆pl;quδnkδst) (28f)

+4∆ml;ts∆kn;ru + 4∆kn;ts∆ml;ru


 (28g)

+ O (λ2)

φcl

mnφcl
klφ

cl
rsφ

cl
tu + O

((
φcl)6) .

Here, (28a) contains the contribution to the planar two-
point function and (28b) the contribution to the non-
planar two-point function. Next, (28c) and (28d) contribute
to the planar four-point function, whereas (28e), (28f)
and (28g) constitute three different types of non-planar
four-point functions.

Introducing the cut-off pi, qi ≤ N in the internal sums
over p, q ∈ N

2, we split the effective action according to [2]
as follows into a relevant/marginal and an irrelevant piece
(Γ [0] can be ignored):

Γ
[
φcl] ≡ Γrel/marg

[
φcl]+ Γirrel

[
φcl] , (29)

with

Γrel/marg
[
φcl] = 4π2θ2

∑
m,n,k,l∈N2

1
2


Gmn;kl

+
λ

6 (4π2θ2)
δmlδkn


2

N∑
p1,p2=0

∆0
0

p1

p2;
p1

p2
0
0

+(m1+n1+m2+n2)

×
N∑

p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
−∆0

0
p1

p2;
p1

p2
0
0

)

+ O (λ2)

φcl

mnφcl
kl

+4π2θ2

×
∑

m,n,k,l∈N2

λ

4!


1 − λ

3 (4π2θ2)

N∑
p1,p2=0

(
∆0

0
p1

p2;
p1

p2
0
0

)2

+ O (λ2)

φcl

mnφcl
nkφcl

klφ
cl
lm . (30)

To the marginal four-point function and the relevant two-
point function only the projections to planar graphs with
vanishing external indices contribute. The marginal two-
point function is given by the next-to-leading term in the
discrete Taylor expansion around vanishing external in-
dices.

In a regime where λ[N ] is so small that the perturbative
expansion is valid in (30), the irrelevant part Γirrel can be
completely ignored. Comparing (30) with the initial action
according to (2), (7) and (8), we have Γrel/marg[Zφcl] =
S
[
φcl; µphys, λphys, Ωphys

]
with

Z = 1 − λ

192π2θ

N∑
p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
− ∆0

0
p1

p2;
p1

p2
0
0

)

+O (λ2) , (31)

µ2
phys = µ2

0


1

+
λ

12π2θ2µ2
0

N∑
p1,p2=0

(
2∆0

0
p1

p2;
p1

p2
0
0
−∆1

0
p1

p2;
p1

p2
1
0

)

− λ

96π2θ

N∑
p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
− ∆0

0
p1

p2;
p1

p2
0
0

)

+O (λ2)

 , (32)
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λphys = λ


1 − λ

12π2θ2

N∑
p1,p2=0

(
∆0

0
p1

p2;
p1

p2
0
0

)2

− λ

48π2θ

N∑
p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
− ∆0

0
p1

p2;
p1

p2
0
0

)

+O (λ2)

 , (33)

Ωphys = Ω


1

+
λ
(
1−Ω2

)
192π2θΩ2

N∑
p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
−∆0

0
p1

p2;
p1

p2
0
0

)

+O (λ2)

 . (34)

Solving (32), (33) and (34) for the bare quantities, we
obtain to one-loop order

µ2
0 [µphys, λphys, Ωphys,N ]

= µ2
phys


1 − λphys

12π2θ2µ2
phys

N∑
p1,p2=0

∆0
0

p1

p2;
p1

p2
0
0

+
λphys

96π2θ

(
1 +

8
θµ2

phys

)

×
N∑

p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
− ∆0

0
p1

p2;
p1

p2
0
0

)

+O (λ2
phys
) , (35)

λ [µphys, λphys, Ωphys,N ]

= λphys


1 +

λphys

12π2θ2

N∑
p1,p2=0

(
∆0

0
p1

p2;
p1

p2
0
0

)2

+
λphys

48π2θ

N∑
p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
− ∆0

0
p1

p2;
p1

p2
0
0

)

+O (λ2
phys
) , (36)

Ω [µphys, λphys, Ωphys,N ]

= Ωphys


1 −

λphys

(
1−Ω2

phys

)
192π2θΩ2

phys

×
N∑

p1,p2=0

(
∆1

0
p1

p2;
p1

p2
1
0
− ∆0

0
p1

p2;
p1

p2
0
0

)

+O (λ2
phys
) . (37)

Inserting (12) into (36) we can now compute the βλ-
function (23) up to one-loop order, omitting the index phys
on µ2 and Ω for simplicity:

βλ =
λ2

phys

48π2 N ∂

∂N
N∑

p1,p2=0







2F1

(
1 ,

µ2
0θ

8Ω − 1
2 (p1+p2)

2+
µ2
0θ

8Ω + 1
2 (p1+p2)

∣∣∣ (1−Ω)2

(1+Ω)2

)

(1+Ω)2
(
1 + µ2

0θ
8Ω + 1

2 (p1+p2)
)



2

+

p1(1−Ω)2 2F1

(
3 ,

1+µ2
0θ

8Ω − 1
2 (p1+p2+1)

3+
µ2
0θ

8Ω + 1
2 (p1+p2+1)

∣∣∣ (1−Ω)2

(1+Ω)2

)

(1+Ω)4
∏2

s=0

(
1+2s

2 + µ2
0θ

8Ω + 1
2 (p1+p2)

)

+




2F1

(
1 ,

µ2
0θ

8Ω − 1
2 (p1+p2+1)

2+
µ2
0θ

8Ω + 1
2 (p1+p2+1)

∣∣∣ (1−Ω)2

(1+Ω)2

)

2(1+Ω)2
(

3
2 + µ2

0θ
8Ω + 1

2 (p1+p2)
)

−
2F1

(
1 ,

µ2
0θ

8Ω − 1
2 (p1+p2)

2+
µ2
0θ

8Ω + 1
2 (p1+p2)

∣∣∣ (1−Ω)2

(1+Ω)2

)

2(1+Ω)2
(
1 + µ2

0θ
8Ω + 1

2 (p1+p2)
)



+ O(λphys)




. (38)

Symmetrising the numerator in the third line p1 �→
1
2 (p1+p2) and using the expansions

2F1

(
1 , a − p

b + p

∣∣∣z)

=
1

1+z
+

z(a+b) + z2(a+b−2)
p(1+z)3

+ O(p−2) ,

2F1

(
3 , a − p

b + p

∣∣∣z) =
1

(1+z)3
+ O(p−1) , (39)

which are valid for large p, we obtain up to irrelevant
contributions vanishing in the limit N → ∞
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βλ =
λ2

phys

48π2 N ∂

∂N
N∑

p1,p2=0

1(
1+Ω2

phys

)2
1

(1 + p1+p2)2

×


1 +

(
1−Ω2

phys

)2

2
(
1+Ω2

phys

) −
(
1+Ω2

phys

)
2




+O (λ3
phys
)

+ O (N −1)

=
λ2

phys

48π2

(
1−Ω2

phys

)
(
1+Ω2

phys

)3 + O (λ3
phys
)

+ O (N −1) . (40)

Similarly, one obtains

βΩ =
λphysΩphys

96π2

(
1−Ω2

phys

)
(
1+Ω2

phys

)3 + O (λ2
phys
)

+ O (N −1) ,

(41)

βµ0 = − λphys

48π2θµ2
phys

(
1+Ω2

phys

)

×


4N ln(2) +

(
8+θµ2

phys

)
Ω2

phys(
1+Ω2

phys

)2




+O (λ2
phys
)

+ O (N −1) , (42)

γ =
λphys

96π2

Ω2
phys(

1+Ω2
phys

)3 + O (λ2
phys
)

+ O (N −1) . (43)

5 Discussion

We have computed the one-loop β- and γ-functions in real
four-dimensional duality-covariant non-commutative φ4-
theory. Remarkably, this model has a one-loop contribution
to the wavefunction renormalisation which partly compen-
sates the contribution from the planar one-loop four-point
function to the βλ-function. The one-loop βλ-function is
non-negative and vanishes in the distinguished case Ω = 1
of the duality-invariant model; see (3). At Ω = 1 also the
βΩ-function vanishes. This is of course expected (to all or-
ders), because for Ω = 1 the propagator (12) is diagonal,

∆m1
m2

n1
n2;k

1
k2

l1
l2

∣∣
Ω=1 =

δm1l1δk1n1δm2l2δk2n2

µ2
0 + (4/θ)(m1+m2+n1+n2+2)

,

so that the Feynman graphs never generate terms with
|mi − li| = |ni − ki| = 1 in (8).

The similarity of the duality-invariant theory with the
exactly solvable models discussed in [4] suggests that also
the βλ-function vanishes to all orders for Ω = 1. The cru-
cial differences between our model with Ω = 1 and [4] is
that we are using real fields, for which it is not so clear

that the construction of [4] can be applied. But the planar
graphs of a real and a complex φ4-model are very simi-
lar, so that we expect identical βλ-functions (possibly up
to a global factor) for the complex and the real model.
Since a main feature of [4] was the independence on the
dimension of the space, the model with Ω = 1 and ma-
trix cut-off N should be (more or less) equivalent to a
two-dimensional model, which has a mass renormalisation
only [8]. Therefore, we conjecture a vanishing βλ-function
in four-dimensional duality-invariant non-commutative φ4-
theory to all orders.

The most surprising result is that the one-loop βΩ-
function also vanishes for Ω → 0. We cannot directly set
Ω = 0, because the hypergeometric functions in (38) be-
come singular and the expansions (39) are not valid. More-
over, the power-counting theorems of [2], which we used to
project to the relevant/marginal part of the effective ac-
tion (30), also requireΩ > 0. However, in the sameway as in
the renormalisation of two-dimensional non-commutative
φ4-theory [8], it is possible to switch off Ω very weakly with
the cut-off N , e.g. with

Ω = e−(ln(1+ln(1+N )))2 . (44)

The decay (44) for large N over-compensates the growth of
any polynomial in lnN , which according to [2] is the bound
for the graphs contributing to a renormalisation of Ω. On
the other hand, (44) does not modify the expansions (39).
Thus, in the limit N → ∞, we have constructed the usual
non-commutative φ4-theory given by Ω = 0 in (2) at the
one-loop level. It would be very interesting to know whether
this construction of the non-commutative φ4-theory as the
limit of a sequence (44) of duality-covariant φ4-models can
be extended to higher loop order.

We also notice that the one-loop βλ- and βΩ-functions
are independent of the non-commutativity scale θ. There
is, however, a contribution to the one-loop mass renormal-
isation via the dimensionless quantity µ2

physθ; see (42).
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